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Abstract 
Scaffolds, one of the most widely used temporary 

structures, are prone to safety-related accidents. 
Despite the fact, checking regulations for a scaffold is 
manually being conducted, which is inefficient, 
especially for a large construction site. This paper 
proposes an automated method to check safety 
regulations regarding scaffolds on sites. 3D point 
cloud data obtained from Terrestrial Laser Scanning 
(TLS) is first processed by a deep learning-based 3D 
segmentation to automatically identify major entities 
Then, a simple rule-based algorithm is applied to the 
segmented data to check for three types of major 
safety-related regulations. The result of our 
experiment shows potential for successfully 
automating scaffold safety checking at a construction 
site. 
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1 Introduction 
Korea Occupational Safety and Health Agency's 2021 

report on industrial accidents shows that the construction 
industry has the highest number of occupational deaths, 
constituting 50.6% of those of all industries [1].  

One of the major reasons for those accidents are 
caused by temporary structures such as scaffolds [2]. 
Scaffolds are, due to their temporary nature, often not 
seriously considered and are prone to safety-related 
accidents [2]. It is, thus, necessary to check scaffolds on 
sites for violations of safety regulations. However, 
manual observation can be time-consuming and 
inaccurate, especially for large-scale construction sites. 

Point cloud data acquired by laser scanning contain 
rich 3D geometric information of a site or an object. 
Pioneering studies, such as [3], demonstrated how TLS 
data can be processed in relation to CAD data. TLS data 
were also proven to have potential for safety regulation 
checking of scaffolds [4]. Recent advancement of deep 

learning technology on point clouds such as [5] allowed 
for a more effective segmentation of scaffold point cloud 
data from a large-scale construction site [6]. 

The proposed methodology fully automates the 
safety-related regulation checking process of scaffolds on 
construction sites. Thanks to deep learning-based point 
cloud segmentation and rule-based algorithm, multi-class 
segmentation and safety regulation checking of scaffolds 
are successfully conducted. 

2 Methodology 
The proposed methodology is divided into two parts: 

multi-class segmentation and regulation checking. For 
multi-class segmentation, point cloud data of a 
construction site acquired by a terrestrial laser scanner 
(FARO m70) are used as the input of RandLA-Net [5]. 
RandLA-Net used in this study is trained to classify each 
point into one of six classes: ‘stairs,’ ‘work platform,’ 
‘uprights,’ ‘guard rail,’ ‘bracing,’ and ‘background.’ For 
regulation checking, a simple and robust rule-based 
algorithm is used to check if the scaffold violates safety 
regulations. The safety regulations to be used were 
selected based on the Korea Occupational Safety & 
Health Agency safety work guidelines on steel pipe 
scaffold (KOSHA Guide C-30-2020 [7]) and modular 
scaffold (KOSHA Guide C-32-2020 [8]). Details of the 
regulations are shown in Table 1. 

Table 1. Considered Regulations 

# Regulations 
Ⅰ Attachment status of working platforms 
Ⅱ Attachment status of stairs 
Ⅲ Attachment status of guard rail 

2.1 Multi-Class 3D Segmentation 
RandLA-Net is a neural architecture structured for 

efficient 3D semantic segmentation on large-scale point 
clouds by using random sampling instead of complex 
point selection approaches. By using a local feature 
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aggregation module, RandLA-Net can capture complex 
local structures [5]. RandLA-Net has proven to 
effectively extract small entities from large scenes by 
showing high performance [5] on the Semantic3D dataset 
[9], a dataset of terrestrial laser scans of outdoor scenes. 
Previous study also proves the high performance of 
RandLA-Net when capturing features of scaffolds in 
large construction sites [6]. 

The RandLA-Net used in this study is composed of 
five sets of encoding and decoding layers. For the transfer 
learning, pre-trained parameters trained with the 
Semantic3D dataset were used as initial parameter values. 
Then, the network was fine-tuned by re-training the 
parameters of the inner six layers of the encoder and 
decoder.  

2.2 Regulation checking algorithm 
To check regulations of Table 1 with labeled outputs 

of RandLA-net, a representative ‘uprights’ coordinate (x 
and y) is first determined for each ‘uprights’ of the 
scaffold by peak finding based on the point density. The 
height (z-value) of each ‘work platform’ is also 
determined as the floor height from the data distribution. 
Then, potential fields of ‘work platform’ and ‘guard rail’ 
are calculated on the x-y plane based on the ‘upright’ 
coordinates by using the standard width of scaffolding 
entities. Figure 1 shows the potential fields of ‘work 
platform’ and ‘guard rail’  

 
Figure 1. Potential fields of ‘work platform’(left) 
and ‘guard rail’(right); Different color shows 
different potential field instances. 

2.2.1 Checking for Regulations Ⅰ&Ⅱ 

Using the floor heights, 3D bounding boxes of 
potential fields for platforms are defined on each floor. 
To check regulationⅠ  (attachment status of working 
platforms), the ‘work platform’ points need to be 
extracted to see if there are enough points within each 
box. If a bounding box turns out to have no work platform, 
it is now time to check regulationⅡ (attachment status 
of stairs). That is, the same bounding box is searched to 
see if there exists ‘stairs’ class points. The checking flow 
is shown in Figure 2. 

 
Figure 2. The checking flow for regulations Ⅰ&
Ⅱ in a 3D bounding box. 

2.2.2 Checking for Regulation Ⅲ 

A 3D bounding box for ‘guard rail’ is generated using 
potential fields of ‘guard rail’ and the z-values between 
two floors. On each bounding box, the presence of ‘guard 
rail’ class points is checked for regulation Ⅲ (attachment 
status of guard rail). The checking flow is shown in 
Figure3. 

 
Figure 3. The checking flow for regulation Ⅲ in 
a 3D bounding box. 
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3 Experiments and Results 

3.1 Dataset preparation 
The dataset used in the experiments were acquired 

using FARO m70 from four different construction sites 
as shown in Figure 4. A total of fifteen registered point 
clouds acquired from Sites A, B, and C were used to train 
RandLA-Net. Each point cloud data were labeled to 
represent a total of six classes: ‘stairs,’ ‘work platform,’ 
‘guard rail,’ uprights,’ ‘bracing,’ and ‘background.’ Data 
acquired from Site D were used for the testing. Total 
number of points in the training and testing data were 
103,223,397 14,649,928 points, respectively.  

 
Figure 4. Upper left; Site A, Upper right; Site B, 
Lower left; Site C, Lower right; Site D. 

3.2 Evaluation metrics 
To effectively calculate the performance of each class, 

Precision, Recall, and F1-score were used. As shown in 
Equations (1) ~ (3), Precision is a metric that calculates 
the percentage of ground truth labels within the predicted 
truth labels. Recall is a metric that calculates the 
percentage of predicted truth labels within the ground 
truth labels. Most importantly, F1-score is a metric that 
calculates the harmonic average of Precision and Recall. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

 

(1) 

𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

 

(2) 

𝐹𝐹1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

 
(3) 

3.3 Segmentation performance 
All parameters of RandLA-Net, except for the 

training epoch, followed the setting of [6]. The training 
epoch was set as 50 considering the trend of training loss. 

The results of multi-class segmentation by RandLA-
Net are shown in Table 2. The results were evaluated 
taking an average of eight experiments with the same 
dataset and parameters. Class ‘background’ had the best 
F1-score of 98.83% followed by other successful 
segmentation results from ‘uprights’ 69.10%, ‘guard rail’ 
68.95%, ‘work platform’ 61.14%, and ‘stairs’ 61.06%. 
Most of the false predictions of those five classes were 
found on the lower part of the scaffold. The ‘bracing’ 
segmentation results showed the poor performance with 
an 16.90% F1-score. This performance indicated a need 
for further studies if a need exists for regulation checking 
regarding bracings. Figure 5 shows a segmentation result. 

Table 2. Segmentation results of RandLA-Net 

Class Precision (%) F1 score (%) 
Recall (%) 

‘stairs’ 66.56 61.06 
62.18 

‘work platform’ 74.87 61.14 
51.92 

‘guard rail’ 93.11 68.95 
55.89 

‘uprights’ 77.09 69.10 
63.37 

‘bracing’ 14.23 16.90 
29.80 

‘background’ 98.19 98.83 
99.48 

3.4 Results and discussions 
According to the regulation checking algorithms, 

both ‘work platform’ and ‘guard rail’ had thirteen 
potential fields on the x-y plane (shown in Figure 1), and 
the number of floors was one. The results for the three 
regulations can be summarized as shown in Table 3. The 
two violations of regulation Ⅲ are shown as yellow line 
in the last picture of Figure 5. They were all accurately 
predicted by the proposed method. 

The regulation checking algorithm was focused on 
scaffold entities containing ‘stairs,’ ‘work platform,’ 
‘guard rail,’ and ‘uprights.’ The misclassified points of 
‘bracing’ could be filtered by following the steps of the 
regulation checking algorithm. This allowed the poor 
segmentation result of ‘bracing’ to not affect the final 
performance of the regulation checking process. 

The scaffold of Site D was an L-shaped scaffold, 
which was not contained in Sites A, B, and C. This shows 
a robust performance of our model regarding the shape 
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of a scaffold. However, there is still a need to enrich the 
dataset to improve segmentation results and generalize 
the proposed methods at other construction sites. Data 
acquisition of this study was limited especially because 
of the temporary nature of scaffolds. Ablation studies of 
generating synthetic data could help to address this 
problem and improve the model generalization.  

 
Figure 5. Visualization of segmentation results; 
{blue: ‘stairs’, purple: ‘work platform’, pink: 
‘guard rail’, white: ‘upright’, red: ‘bracing’} 

4 Conclusion 
This study presented a fully automated methodology 

to accurately check three major safety scaffold-related 
regulations specified in the KOSHA Guide to scaffolds 
[7, 8]. The proposed methodology is composed of a deep 
learning-based point cloud segmentation (RandLA-Net) 
and rule-based algorithms. The segmentation F1 scores 
were 98.83% for ‘background,’ 69.10% for ‘uprights,’ 
68.95% for ‘guard rail,’ 61.14% for ‘work platform,’ 
61.06% for ‘stairs,’ and 16.90% for ‘bracing,’ 
respectively. They were sufficient to successfully check 
all three major regulations considered on this study. 
These results indicate that this methodology has high 
potential to fully automate safety monitoring of scaffolds 
which will lead to a significant reduction in accidents and 
deaths in the construction industry. 
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